(64-x^2)/(x^2+8x)=1

Simple and best practice solution for (64-x^2)/(x^2+8x)=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (64-x^2)/(x^2+8x)=1 equation:


D( x )

x^2+8*x = 0

x^2+8*x = 0

x^2+8*x = 0

x^2+8*x = 0

DELTA = 8^2-(0*1*4)

DELTA = 64

DELTA > 0

x = (64^(1/2)-8)/(1*2) or x = (-64^(1/2)-8)/(1*2)

x = 0 or x = -8

x in (-oo:-8) U (-8:0) U (0:+oo)

(64-x^2)/(x^2+8*x) = 1 // - 1

(64-x^2)/(x^2+8*x)-1 = 0

x^2+8*x = 0

x^2+8*x = 0

x*(x+8) = 0

x+8 = 0 // - 8

x = -8

x*(x+8) = 0

(64-x^2)/(x*(x+8))-1 = 0

(64-x^2)/(x*(x+8))+(-1*x*(x+8))/(x*(x+8)) = 0

64-1*x*(x+8)-x^2 = 0

64-2*x^2-8*x = 0

64-2*x^2-8*x = 0

2*(32-x^2-4*x) = 0

32-x^2-4*x = 0

DELTA = (-4)^2-(-1*4*32)

DELTA = 144

DELTA > 0

x = (144^(1/2)+4)/(-1*2) or x = (4-144^(1/2))/(-1*2)

x = -8 or x = 4

2*(x+8)*(x-4) = 0

(2*(x+8)*(x-4))/(x*(x+8)) = 0

(2*(x+8)*(x-4))/(x*(x+8)) = 0 // * x*(x+8)

2*(x+8)*(x-4) = 0

( x+8 )

x+8 = 0 // - 8

x = -8

( x-4 )

x-4 = 0 // + 4

x = 4

x in { -8}

x = 4

See similar equations:

| g-1.9=10 | | 1/4(4x-7)=x+7/8 | | 9+4a=180 | | 9+4a=90 | | 8x+9=12+11x | | 3(j-2k)=27 | | 4+7a=90 | | 50+60+x=180 | | -3x-5=-(2x+2) | | -7=-5/6x+3+7/6x | | -2(5)=x | | -36-154=x | | 2x-5+3x-10=90 | | -11a-13+7a-3b= | | (v-2)/(v^2-4) | | 16a-56=8 | | -3x-5=2x+2 | | 28a+14=42 | | -4=-5u | | 3x+4X+x=180 | | 30a+45=105 | | x(x+30)=3600 | | 3+x+3+x+90=180 | | 6x+3x-5x=1 | | 6(9+4x)=78 | | (2m^4/m^2)-4 | | 2x-21=x/4 | | 1/5y+10=15 | | -6/14 | | -2(a-5)(a-7)=0 | | 3x+3x+90=180 | | 6x-5=59 |

Equations solver categories